

Parallelism in wonderland:

are you ready to see how deep the rabbit hole goes?

Class introduction

- A bird's eye view on the 2014 class -

Marco D. Santambrogio: marco.santambrogio@polimi.it Simone Campanoni: xan@eecs.harvard.edu

One core to rule them all

Xenon: XBOX360

Three symmetrical cores

- each two way SMT-capable and clocked at
 - 3.2 GHz

Cell: PS3

- Cell is a heterogeneous chip multiprocessor
 - One 64-bit Power core
 - 8 specialized co-processors

Technology constantly on the move!

- Num of transistors not limiting factor
 - Currently ~ 1 billion transistors/chip
 - Problems:
 - Too much Power, Heat, Latency
 - Not enough Parallelism
- 3-dimensional chip technology?
 - Sandwiches of silicon
 - "Through-Vias" for communication
- On-chip optical connections?
 - Power savings for large packets
- The Intel® Core™ i7 microprocessor ("Nehalem")
 - 4 cores/chip

3

- ▶ 45 nm, Hafnium hi-k dielectric
- 731M Transistors
- Shared L3 Cache 8MB
- L2 Cache 1MB (256K x 4)

Reasons to attend this class...

World's richest people

- •Carlos Slim, \$73B
- •1°: 2013, 2012, 2011, 2010
- •2°: 2008
- •3°: 2009, 2007, 2006
 - •Bill Gates, \$54B
 - •2°: 2013, 2012, 2011, 2010
 - •3°: 2008
 - •1°: 2009, 2007, 2006, ..., 1995
- •Sergey Brin, \$22.8B
- •21°: 2013

qe

Things to avoid

- Wikipedia
 - http://www.wikipedia.org/
- Wikipedia
 - http://www.wikipedia.org/
- Wikipedia
 - http://www.wikipedia.org/

Something against Wikipedia? Why?

ng Started	Lates	t Headlines a (Untitle	d)					- A CAR
droi 👔	live	an 🧊 iFiles p	Files	pe	Manage	Sunivers	🗋 rocca1 📗 Corso c	Star WC
	12 🔻	Christy Walton	22.5 🔺	55	Stati Uniti	Stati Uniti	Walmart	$\mathbb{P}_{\mathcal{L}}$
	13 🔻	Stefan Persson	22.4 🔺	62	Svezia	Svezia	Hennes & Mauritz	B S S M
	14 🗸	Li Ka shing	21.0 🔺	81	Hong Kong	🖌 Hong Kong	Varie	「ア維」
	15	Jim Walton	20.7 🔺	62	Stati Uniti	Stati Uniti	Walmart	

Legenda

- 🗼 : aumentato rispetto al 2008
- ▼ : diminuito rispetto al 2008
- nessuna variazione rispetto al 2008

Il patrimonio è espresso in miliardi di dollari statunitensi

P	osizione 🖂	Nome 🕅	Patrimonio 🖂	Età 🖂	Na	azione 🖂	
	1.	Carlos Slim Helú	53,5 👗	69	Messic	o	
	2¥	Bill Gates	53,0 🔺	53	Stati U	The World's Billionaires Edited by Luisa Kroll, Matthew Miller and Tatiana Serafin	03.11.09, (6:00 PM EDT
	3▼	Warren Buffett	47,0 🗡	78	Stati U		
		Lawrence Ellison	28 🗡	64	💻 Stati U	The richest people in the world have gotten poorer, just like	#1 Bill Gates, \$40
	5▲	Inovar Kamprad e famiolia	22.0 ¥	83	Svezia	average net world \$3 billion, down 23% in 12 months. The world now has 793 manageres, down from 1,125 a year ago.	

sliph sliph

More ...

After slipr

Billionaire Bust

Last year the world had 1,125 billionaires. Today there are 793. How \$1.4 trillion vanished.

bil bil

Outline

- Class Topics: how to turn lead into gold
- Class organization
- End?...

Topics

- Computer Architecture
 - Internal Parallelism in processors:
 - Pipelining
 - Instruction level parallelism inside processors
 - How to get more performance? Superscalar processors
 - Process level parallelism
 - Thread-level
 - Multiprocessor architectures
 - Cache memories in the multicore era
- Compiler
 - Thread Level Parallelism
 - Different sources
 - Declaring vs. inferring TLP
 - Implications of TLP
 - Practical benefits and disadvantages
 - Performance variation
 - Communication
 - Developing

How to turn lead into gold

The Alchemist (1771), Joseph Wright of Derby (Derby Museum and Art Gallery, Derby, UK)

POLITECNICO DI MILANO

Computing Devices Then...

EDSAC, University of Cambridge, UK, 1949

Computing Devices Now

But also...

POLITECNICO DI MILANO

"Traditional" Computation

- Software is written for serial computation
 - It has to be executed on a single computer having a single Central Processing Unit (CPU)
 - A problem is broken into a discrete series of instructions
 - Instructions are executed one after another
 - Only one instruction may execute at any moment in time.

But the world is "parallel"

- Events are happening simultaneously
 - Many complex, interrelated events happening at the same time, yet within a sequence:
- Some examples:
 - Galaxy formation
 - Planetary movement
 - Tectonic plate drift
 - Rush hour traffic
 - Automobile assembly line
 - Building a space shuttle
 - Ordering a hamburger at the drive through

Parallel?: which kind of parallelism?

Pipelined Instruction Execution

16

Limits to pipelining

- Maintain the von Neumann "illusion" of one instruction at a time execution
- Hazards prevent next instruction from executing during its designated clock cycle
 - Structural hazards: attempt to use the same hardware to do two different things at once
 - Data hazards: Instruction depends on result of prior instruction still in the pipeline
 - Control hazards: Caused by delay between the fetching of instructions and decisions about changes in control flow (branches and jumps).

Progression of ILP

- 1st generation RISC pipelined
 - Full 32-bit processor fit on a chip ->issue almost 1 IPC
 - Need to access memory 1+x times per cycle
 - Floating-Point unit on another chip
 - Cache controller a third, off-chip cache
 - 1 board per processor -> multiprocessor systems
- 2nd generation: superscalar
 - Processor and floating point unit on chip (and some cache)
 - Issuing only one instruction per cycle uses at most half
 - Fetch multiple instructions, issue couple
 - Grows from 2 to 4 to 8 ...
 - How to manage dependencies among all these instructions?
 - Where does the parallelism come from?
- VLIW
 - Expose some of the ILP to compiler, allow it to schedule instructions to reduce dependences

Modern ILP

- Dynamically scheduled, out-of-order execution
- Current microprocessor fetch 10s of instructions per cycle
- Pipelines are 10s of cycles deep
 - many 10s of instructions in execution at once
- Grab a bunch of instructions, determine all their dependences, eliminate dep's wherever possible, throw them all into the execution unit, let each one move forward as its dependences are resolved
- Appears as if executed sequentially
- On a trap or interrupt, capture the state of the machine between instructions perfectly
- Huge complexity

Single Processor Performance

Move to multi-processor

•20

POLITECNICO DI MILANO

Current Trends in Architecture

- Cannot continue to leverage Instruction-Level parallelism (ILP)
 - Single processor performance improvement ended in 2003
- New models for performance:
 - Data-level parallelism (DLP)
 - Thread-level parallelism (TLP)
 - Request-level parallelism (RLP)
- These require explicit restructuring of the application... one of the reasons behind this joint CA-Compiler class

When all else fails - guess

- Programs make decisions as they go
 - Conditionals, loops, calls
 - Translate into branches and jumps (1 of 5 instructions)
- How do you determine what instructions for fetch when the ones before it haven't executed?
 - Branch prediction
 - Lot's of clever machine structures to predict future based on history
 - Machinery to back out of mis-predictions
- Execute all the possible branches
 - Likely to hit additional branches, perform stores
 - \Rightarrow speculative threads
 - ⇒What can hardware do to make programming (with performance) easier?

Have we reached the end of ILP?

- Multiple processor easily fit on a chip
- Every major microprocessor vendor has gone to multithreading
 - Thread: loci of control, execution context
 - Fetch instructions from multiple threads at once, throw them all into the execution unit
 - Intel: hyperthreading,
 - Concept has existed in high performance computing for 20 years (or is it 40? CDC6600)
- Vector processing
 - Each instruction processes many distinct data
 - ► Ex: MMX
- Raise the level of architecture many processors per chip

Chip-Multiprocessor

Figure 1. Chip-multiprocessor model.

Tensilica Configurable Proc

Classes of Computers

- Personal Mobile Device (PMD)
 - e.g. start phones, tablet computers
 - Emphasis on energy efficiency and real-time
- Desktop Computing
 - Emphasis on price-performance
- Servers
 - Emphasis on availability, scalability, throughput
- Clusters / Warehouse Scale Computers
 - Used for "Software as a Service (SaaS)"
 - Emphasis on availability and price-performance
 - Sub-class: Supercomputers, emphasis: floating-point performance and fast internal networks
- Embedded Computers
 - Emphasis: price

Computer Architecture Topics: Beyond ILP

- ILP architectures (superscalar, VLIW...):
 - Support fine-grained, instruction-level parallelism;
 - Fail to support large-scale parallel systems;
- Multiple-issue CPUs are very complex, and returns (as far as extracting greater parallelism) are diminishing
 - extracting parallelism at higher levels becomes more and more attractive.
- A further step: process- and thread-level parallel architectures.
- To achieve ever greater performance: connect multiple microprocessors in a complex system.

Computer Architecture Topics: Parallel Architectures

 Definition: "A parallel computer is a collection of processing elements that cooperates and communicate to solve large problems fast"

Almasi and Gottlieb, Highly Parallel Computing, 1989

- The aim is to replicate processors to add performance vs design a faster processor.
- Parallel architecture extends traditional computer architecture with a communication architecture
 - abstractions (HW/SW interface)
 - different structures to realize abstraction efficiently

Class Organization

I will use Google before asking dumb questions. www.mrburns.nl before asking dumb questions. I will use Google before asking dumb questions I will use Google before asking dumb questions. I will use Google asking dumb questions. I will use Google before asking dumb questions I will use Google before asking dumb questions. I will use Google asking dumb questions. I will use Google before asking dumb questions I will use Google before asking dumb questions. I will use Google asking dumb questions. I will use Google before asking dumb questions I will use Google before asking dumb questions. I will use Google before asking dumb questions. I will use Google before asking dumb questions I will use Google before asking dumb questions. I will use Google before asking dumb questions

Course Focus

 Understand design techniques, machine structures, technology factors, evaluation methods, design of computer architectures

Topic Coverage

- Textbook: Hennessy and Patterson, Computer Architecture: A Quantitative Approach, 4th Ed. (now there is the new 5th edition)
- Slides and papers
 - Can be found on Santambrogio's website (http://home.dei.polimi.it/santambr)

Lectures

- Lecture 1: intro Wed 15, from 2pm to 3.30 pm (1.5h)
- Computer architecture (@ Aula Seminari Alessandra Alario 4th Floor Building 21)
 - Lecture 2 Thr 16, from 10am to 12.30pm (2.30h 4t)
 - Lecture 3 Thr 16, from 2pm to 4pm (2h 6t)
 - Lecture 4 Fri 17, from 3.30pm to 6.30pm (3h 9t)
- Compiler (@ Aula Seminari Alessandra Alario 4th Floor Building 21)
 - Lecture 5 Mon 20, from 9am to 12pm (3h 12t)
 - Lecture 6 Tue 21, from 9am to 1pm (4h 16t)
 - @ PT1 Ground Floor Building 20
 - Lecture 7 Thr 23, from 9am to 1pm (4h 20t)
- Exam/Papers' Assignment (@ Aula Seminari Alessandra Alario 4th Floor Building 21)
 - Papers' Assignment Mon 20, from 2pm to 4pm
 - Exam Fri 24, from 2pm to 6pm

Exams

- When: Fri 24, from 2pm to 6pm
- Where: @ Aula Seminari Alessandra Alario
 - 4th Floor Building 21

Exams

- When: Fri 24, from 2pm to 6pm
- Where: @ Aula Seminari Alessandra Alario
 - 4th Floor Building 21

- What (thrown):
 - Present and defend to the rest of the class a research from a set of works we will briefly introduce on Monday
 - Write a compiler pass in ILDJIT to estimate an assigned type of parallelism of an assigned set of programs we will provide

Exams

- When: Fri 24, from 2pm to 6pm
- Where: @ Aula Seminari Alessandra Alario
 - 4th Floor Building 21

e class a research troduce on Monday imate an assigned of programs we

Contacts and Office Hours

Simone Campanoni

- Contact:
 - email: xan@eecs.harvard.edu
 - Gmail: simo.xan@gmail.com
 - Skype: campanoni.simone

• Marco D. Santambrogio

- Contact:
 - email: marco.santambrogio@polimi.it
 - skype: marco.santambrogio
 - office: 3492 (DEI, first floor)

Are you ready to see how deep the rabbit-hole goes?...

