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Back to the Intro to the Pipeline
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Sequential vs. Pipelining Execution
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Implementation of MIPS pipeline

ID — Instruction Decode
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Note: Optimized Pipeline

¢ Register File used in 2 stages: Read access durine '™
and write access during WB

» What happens if read -

register i~ ' w o“ )
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Note: Optimized Pipeline

e Register File used in 2 stages: Read access during ID
and write access during WB

» What happens if read and write refer to the same
register in the same clock cycle?

e It is necessary to insert one stall

e Optimized Pipeline: the RF read occurs in the second
half of clock cycle and the RF write in the first half of

clock cycle

» What happens if read and write refer to the same
register in the same clock cycle?

e It is not necessary to insert one stall

NECST

“an, POLITECNICO
% DI MILANO
laboratory &=







LS Outline

e The Problem of Pipeline Hazards

e Performance Issues in Pipelining
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The Problem of Hazards

¢ A hazard is created whenever there is a dependence
between instructions, and instructions are close
enough that the overlap caused by pipelining would
change the order of access to the operands involved in
the dependence.

¢ Hazards prevent the next instruction in the pipeline
from executing during its desighated clock cycle.

e Hazards reduce the performance from the ideal
speedup gained by pipelining.
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Three Classes of Hazards

e Structural Hazards: Attempt to use the same resource
from different instructions simultaneously

» Example: Single memory for instructions and data

e Data Hazards: Attempt to use a result before it is
ready

» Example: Instruction depending on a result of a previous
instruction still in the pipeline

e Control Hazards: Attempt to make a decision on the
next instruction to execute before the condition is
evaluated

» Example: Conditional branch execution
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Structural Hazards

e No structural hazards in MIPS architecture:
» Instruction Memory separated from Data Memory

» Register File used in the same clock cycle: Read
access by an instruction and write access by another
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Speed Up Equation for Pipelining

CPI = Ideal CPT + Average Stall cycles per Inst

pipelined

Ideal CPT x Plpelme dep1’h CYC|e Timeunpipelined
Ideal CPT + Pipeline stall CPL ™ Cycle Time

Speedup =
pipelined

‘For simple RISC pipeline, CPT = 1:

Pipeline depth Cycle Time,iselined
1 + Pipeline stall CPT Cycle Time

Speedup =
pipelined
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Data Hazards

e If the instructions executed in the pipeline are
dependent, data hazards can arise when instructions
are too close

e Example:
sub $2, $1, $3 # Reg. $2 written by sub
and $12, $2, S$5 # 1° operand ($2) depends on sub
or $13, S$6, $2 # 2° operand ($2) depend on sub
add $14, $2, $2 # 1° ($2) & 2° ($2) depend on sub
sw $15,100($2) # Base reg. ($2) depends on sub
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Data Hazards in the Optimized Pipeline: Example

sub $2,

and $12,

or $13,

add $14,

sw $15

$1, $3

$2, S$5

$6, $2

$2, $2

»100($2)

\J

Instruction order

Time
.
IM | [ | RHG
e

2 ns

M

<>
2 ns
RHG

DM
U

It is necessary to insert two stalls
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Type of Data Hazard

Read After Write (RAW)
Instr, tries to read operand before Instr, writes it

<::I: add rl,r2,r3
J: sub r4,rl,r3

. Caused by a “Dependence” (in compiler nomenclature).
This hazard results from an actual need for
communication.
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Data Hazards: Possible Solutions

¢ Compilation Techniques:
» Insertion of nop (no operation) instructions

» Instructions Scheduling to avoid that correlating
instructions are too close

e The compiler tries to insert independent instructions
among correlating instructions

e When the compiler does not find independent instructions,
it insert nops.

e Hardware Techniques:
» Insertion of “bubbles” or stalls in the pipeline
» Data Forwarding or Bypassing
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Just an example...

' |
sub M | [ Kﬁ(G 1 Tempo
—p
2 ns
and IM
-

2 ns
or
add
sSw Ordine di esecuzione

delle istruzioni

| need to insert 2 bubbles or 2 stalls
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Insertion of nops

sub 52, $1, 33| |[F | ID | EX | ME | W

nop IF | ID | EX | ME B

Hop IF | ID | EX ‘ WB

and $12, $2, $5 IF | | : ME | WB

or $13, $6, $2 |F I& X | ME | WB

add $14, $2, S$2 IF EX | ME | WB

sw  $15,100(52) IF | ID | EX | ME | WB
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Insertion of bubbles and stalls

sub $2, s1, $3
and $12,8$2, $5
or $13, $6,%2
add $14,$2, $2

sw $15,10082)

Contenuto di 2

CK1 CK2 CK3 CK4 CK5 CKo6 CK7 CK8 CK9 CKI10 CKI11 CKI1 2>
Time
IF 1D EX MEM (clock cycles)
IF bubble bubble] 1 X | MEM | WB
N
IF
‘\\:\EX MEM | WB
A W W
IF %\ N EX | MEM | WB
IF ID EX | MEM | WB
10 10 10 10 -20 -20 -20 -20 -20 -20 -20 -20
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Scheduling: Example

sub $2,
and $12,

or S$13,
add $14,

add $4,
and S7,
lw $16,
1w $17,

$3 sub $2, $1, $3
$5 add $4, $10, S11
$2 ‘ and $7, $8, $9
$2, $2 lw $16, 100(S18)
sw $15,100($2) 1w $17, 200(S19)
$11 and $12, $2, S5
56 or $13, S$o6, $2
100 (518) add $14, $2, $2
200 ($19) sw $15,100($2)
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Forwarding

¢ Data forwarding uses temporary results stored in the
pipeline registers instead of waiting for the write back

of results in the RF.

¢ We need to add multiplexers at the inputs of ALU to
fetch inputs from pipeline registers to avoid the
insertion of stalls in the pipeline.
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Forwarding: Example

EX/EX path  MEM/EX _path
w WB | MEM/ID path
and $12, < \E [ WB
add $14,
$15,100 ($2)
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Implementation of MIPS with Forwarding Unit

IF/ID ID/IEX EX/MEM MEM/WB
' M
c
i<l » U >
Instr S » Reg. _,Q Data
Memory 2 Memory
PC| > ALU >
M
WB path > u
> M X
> u -
X
IF/ID.RegisterRs »>
IF/ID.RegisterRt
IF/ID.RegisterRt

» M EX/MEM.RegisterRd

IF/ID.RegisterRd u » >

MEM/ID path :k Fong:irtdmg ) MEMMWB.RegisterRd

— EX/EX path
MEM/EX path
CST T POLITECNICO
N E )) DI MILANO

laboratory




Data Hazards: Load/Use Hazard

Ll: 1w $s0, 4 (sStl) # Ss0O <- M [4 + Stl1]
L2: add S$s5, $s0, $sl # 1° operand depends from L1

CK1 CK2 CK3 CK4 CK5 CK6 CK7 >

lw $s0, 4(stl){ IF ID | EX | MEM

add $s5,$so,$si IF ID“4" EX Nmmai WB
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Data Hazards: Load/Use Hazard

e With forwarding using the MEM/EX path: 1 stall

_CKl

_CK2

CK3

CK4

CK5

CK6  CK7

1w $s0, 4(Stl)

IF

ID

EX

MEM

WB

add $s5,$sO,$si

- IF

D

1D

EX

MEM WB

#

>
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Data Hazards: Load/Store

Ll: 1w $s0, 4 (sStl) # Ss0O <- M [4 + Stl1]
L2: sw $s0, 4(St2) # M[4 + St2] <- S$s0

CK1 : CKz: CK3: CK4 : CK5 : CK6 : CK7:>
lw $s0, 4($t1)l IF | ID | EX MEMl
sw $s0, 4($t2)§ IF ID EX MEMI WB |

Contenutodissoé 10 10 10 10 10/205 20 20

> Without forwarding : 3 stalls
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Data Hazards: Load/Store

1w

SwW

Forwarding: Stall = 0

We need a forwarding path to bring the load result from the
memory (in MEM/WB) to the memory’s input for the store.

CK1 CK2 CK3 CK4 CK5 CK6 CK7

$s0, 4($tl)| IF ID { EX MEM\I WB |

$s0, 4(5$t2) ! . IF | ID | EX H/IEM . WB
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Implementation of MIPS with Forwarding Unit

IF/ID

Memoriq
Istruzion

Instruction

Reg. Mem
4 H Dati
WB
path
IF/ID.RegisterRs Rs
IF/ID.RegisterRt Rt MEM/MEM pat
IF/ID.RegisterRt Rt EXIMEM RegisterRd
IF/ID.RegisterRd Rd

MEM/EX path

> EX/EX path
> MEM/EX path

> MEM/MEM path
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Forwarding to Avoid LW-SW Data Hazard

L3N

S0 Q0

Time (clock cycles)

add rl,r2,r3 [fe

lw r4, 0(rl)

sw rd,12(rl)

or r8,r6,r9

xor rl0,r9,rll

[fetch

ALV

DMen

[fetch

ALV

[fetch

ALl

[fetch

DMen a
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Data Hazard Even with Forwarding

I +u3 N

ST 0Q3Q

Time (clock cycles)

1w rl, 0(xr2)

sub r4,rl,r6

and r6,rl,r7

or r8,rl,r9
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Software Scheduling to Avoid Load Hazards

Try producing fast code for

a=b+c;
d=e-f;
assuming a, b, ¢, d ,e, and f in memory.
Slow code:
LW Rb,b Fast code:
LW Rc,C LW
ADD  Ra,Rb,Rc m
SW a,Ra ADD
LW Re,e LW
LW Rf,f SW
SUB  Rd,Re,Rf SUB
SW d,Rd SW

Compiler optimizes for performance.

Hardware checks for safety.

Rb,b
Rc,c
Re,e
Ra,Rb,Rc
Rf,f

a,Ra
Rd,Re,Rf
d,Rd
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Data Hazards

e Data hazards analyzed up to now are:

» RAW (READ AFTER WRITE) hazards: instruction n+1
tries to read a source register before the previous
instruction n has written it in the RF.

» Example:
add $rl, $r2, $r3
sub $r4, $rl, $r5

¢ By using forwarding, it is always possible to solve this
conflict without introducing stalls, except for the
load/use hazards where it is necessary to add one stall
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Data Hazards

e Other types of data hazards in the pipeline:
» WAW (WRITE AFTER WRITE)
» WAR (WRITE AFTER READ)
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Data Hazards: WAW (WRITE AFTER WRITE)

e Instruction n+1 tries to write a destination operand
before it has been written by the previous instruction n
=> write operations executed in the wrong order

e This type of hazards could not occur in the MIPS
pipeline because all the register write operations occur

in the WB stage
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Data Hazards: WAW (WRITE AFTER WRITE)

e Example: If we assume the register write in the ALU
instructions occurs in the fourth stage and that load
instructions require two stages (MEM1 and MEM2) to
access the data memory, we can have:

CKI _CK2 CK3 CK4 CK5 CK6 CK7
lw Srl, 0(S$r2) IF ID EX | MEM1| MEMf WB |
add $rl,$r2,Sr3| | IF 1D EX | WB
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Data Hazards: WAW (WRITE AFTER WRITE)

e Example: If we assume the floating point ALU
operations require a multi-cycle execution, we can

have:
CK1 CK2 CK3 CK4 CK5 CK6 CK7 CK8 >
mul $£6,$f2,$f2| IF ID | MUL1{ MUL2 | MUL3 || MUL4 | MEM | WB
add $f6,$f2,$£2] | IF ID AD1 | AD2 |MEM | wB 1/
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WAW Data Hazards

Write After Write (WAW)
Instr, writes operand before Instr, writes it.

I: sub rl,r4,r3
J: add rl,r2,r3

K: mul ré6,rl,r7
Called an "output dependence” by compiler writers

This also results from the reuse of name “r1”.
Can’ t happen in MIPS 5 stage pipeline because:

» All instructions take 5 stages, and

» Writes are always in stage 5
Will see WAR and WAW in more complicated pipes
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Data Hazards: WAR (WRITE AFTER READ)

e Instruction n+1 tries to write a destination operand
before it has been read from the previous instruction n
=> instruction n reads the wrong value.

e This type of hazards could not occur in the MIPS
pipeline because the operand read operations occur in
the ID stage and the write operations in the WB stage.

e As before, if we assume the register write in the ALU
instructions occurs in the fourth stage and that we
need two stages to access the data memory, some
instructions could read operands too late in the
pipeline.
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Data Hazards: WAR (WRITE AFTER READ)

Example: Instruction sw reads $r2 in the second
half of MEM2 stage and instruction add writes $r2
in the first half of WB stage = sw reads the new

value of $r2.

CK1 CK2 CK3 CK4 CK5 CKo6 CK7 >

0($r2) | IF ID | EX | MEMI MEMH WB |

EX | W

sw Srl,

add $r2, $r3, sk4a | IF | ID
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WAR Data Hazards

e Write After Read (WAR)
Instr, writes operand before Instr, reads it

I: sub r4,rl,r3
J: add rl,r2,r3
K: mul ré6,rl,r7

e Called an "anti-dependence” by compiler writers.

This results from reuse of the name “r1”.

¢ Can’ t happen in MIPS 5 stage pipeline because:
» All instructions take 5 stages, and
» Reads are always in stage 2, and
» Writes are always in stage 5
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Performance Issues in Pipelining

e Pipelining increases the CPU instruction throughput
(number of instructions completed per unit of time),
but it does not reduce the execution time (latency)
of a single instruction.

e Pipelining usually slightly increases the latency of
each instruction due to imbalance among the
pipeline stages and overhead in the control of the
pipeline.

» Imbalance among pipeline stages reduces performance
since the clock can run no faster than the time needed
for the slowest pipe stage.

» Pipeline overhead arises from pipeline register delay
and clock skew.
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Performance Issues in Pipelining

e The average instruction execution time for the
unpipelined processor is:

Ave. Exec. Time Unpipelined = Ave. CPI Unp. x Clock Cycle Unp.

Pipeline Speedup = Ave. Exec. Time Unpipelined =
Ave. Exec. Time Pipelined

= Ave. CPI Unp. x Clock Cycle Unp. =
Ave. CPI Pipe Clock Cycle Pipe
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Performance Issues in Pipelining

e The ideal CPl on a pipelined processor is almost always
1, but stalls cause the pipeline performance to
degrade form the ideal performance, so we have:

Ave. CPI Pipe = Ideal CPI + Pipe Stall Cycles per
Instruction
=1 + Pipe Stall Cycles per Instruction

e Pipe Stall Cycles per Instruction are due to
Structural Hazards + Data Hazards + Control Hazards
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Performance Issues in Pipelining

If we ignore the cycle time overhead of pipelining and we assume
the stages are perfectly balanced, the clock cycle time of two
processors can be equal, so:

Pipeline Speedup = Ave. CPI Unp.
1 + Pipe Stall Cycles per Instruction

Simple case: All instructions take the same number of cycles,
which must also equal to the number of pipeline stages (called
pipeline depth):
Pipeline Speedup = Pipeline Depth

1 + Pipe Stall Cycles per Instruction

If there are no pipeline stalls (ideal case), this leads to the
intuitive result that pipelining can improve performance by the
depth of the pipeline.
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Performances

Cl = # of Instructios

# Clock Cycles = ClI + # Stall Cycles + 4

CPI = # Clock Cycles / ClI = (Cl + # Stall Cycles + 4) / Cl

MIPS = f.. ./ (CPI * 10 6)
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Performance

Time
M REG |
sub $2, $1, $3 L |
—>
2 ns
and $12, $2, S5 IM
<>

2 ns

or $13, $6, $2

add $14, $2, $2

sw $15,100($2)

j} TDM

\J
Instruction order It is necessary to insert two stalls

IC=5

# Clock Cycles = IC + # Stall Cycles +4=5+2 +4 = 11
CPl = # Clock Cycles/ Cl = 11/ 5=2.2

MIPS = f_ .. / (CPI1*10¢) =500 MHz / 2.2 * 10 6= 227.3
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Asymptotic Performance

We have n iterations of a cycle defined using m
instructions. We have k stalls for the m instructions

ICAS= m*n

# Clock Cycles = IC ,c + (# Stall Cycles ),c + 4

CPl . =lim . (IC , + # Stall Cycles ,c +4) /IC 4
=lim_ ..,(m*n+k*n+4)/m*n

=(m+Kk)/ m
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Questions

| have no idea what Vﬂll re tallung 3|llllll
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