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Back to the Intro to the Pipeline 
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Sequential vs. Pipelining Execution 

 

2 ns 

Time 

I2 

I3 

I1 WB MEM EX ID IF 

2 ns 

2 ns 

WB MEM EX ID IF 

WB MEM EX ID IF 

WB MEM EX ID IF 

WB MEM EX ID IF 2 ns 

I4 

I5 

 
I2 

… 

I1 

WB MEM EX ID IF WB MEM EX ID IF 

10 ns 10 ns 

3  



Implementation of MIPS pipeline 
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Note: Optimized Pipeline 

!   Register File used in 2 stages: Read access during ID 
and write access during WB 
!   What happens if read and write refer to the same 

register in the same clock cycle? 
!   It is necessary to insert one stall 

!   Optimized Pipeline: the RF read occurs in the second 
half of clock cycle and the RF write in the first half of 
clock cycle 
!   What happens if read and write refer to the same 

register in the same clock cycle? 
!   It is not necessary to insert one stall 
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Note: Optimized Pipeline 

!   Register File used in 2 stages: Read access during ID 
and write access during WB 
!   What happens if read and write refer to the same 

register in the same clock cycle? 
!   It is necessary to insert one stall 

!   Optimized Pipeline: the RF read occurs in the second 
half of clock cycle and the RF write in the first half of 
clock cycle 
!   What happens if read and write refer to the same 

register in the same clock cycle? 
!   It is not necessary to insert one stall 
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Today… 
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Outline 

!   The Problem of Pipeline Hazards 

!   Performance Issues in Pipelining 
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The Problem of Hazards 

!   A hazard is created whenever there is a dependence 
between instructions, and instructions are close 
enough that the overlap caused by pipelining would 
change the order of access to the operands involved in 
the dependence. 

!   Hazards prevent the next instruction in the pipeline 
from executing during its designated clock cycle. 

!   Hazards reduce the performance from the ideal 
speedup gained by pipelining. 
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Three Classes of Hazards 

!   Structural Hazards: Attempt to use the same resource 
from different instructions simultaneously 
!   Example: Single memory for instructions and data 

!   Data Hazards: Attempt to use a result before it is 
ready 
!   Example: Instruction depending on a result of a previous 

instruction still in the pipeline 

!   Control Hazards: Attempt to make a decision on the 
next instruction to execute before the condition is 
evaluated 
!   Example: Conditional branch execution 
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Structural Hazards  

!   No structural hazards in MIPS architecture: 

!   Instruction Memory separated from Data Memory 
!   Register File used in the same clock cycle: Read 

access by an instruction and write access by another 
instruction 

 

2 ns 

Time 

I2 

I3 

I1 

2 ns 

2 ns 

2 ns 

I4 

I5 

IM REG DM REG 
A 
L 
U 

IM REG DM REG A 
L 
U 

IM REG DM REG 
A 
L 
U 

IM REG DM REG A 
L 
U 

IM REG DM REG 
A 
L 
U 

11  



Speed Up Equation for Pipelining 

pipelined
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 TimeCycle
 TimeCycle
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+
×

=
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+

=
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• For simple RISC pipeline, CPI = 1: 
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Data Hazards  

!   If the instructions executed in the pipeline are 
dependent, data hazards can arise when instructions 
are too close  

 
!   Example: 
 sub  $2, $1, $3 # Reg. $2 written by sub 
and $12, $2, $5 # 1° operand ($2) depends on sub 
or $13, $6, $2  # 2° operand ($2) depend on sub  
add $14, $2, $2 # 1° ($2) & 2° ($2) depend on sub  
sw $15,100($2)  # Base reg. ($2) depends on sub 
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Data Hazards in the Optimized Pipeline: Example 

•   
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It is necessary to insert two stalls 

sub  $2, $1, $3 
and $12, $2, $5 
or  $13, $6, $2 
add $14, $2, $2 
sw  $15,100($2) 

Time 

Instruction order 
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Type of Data Hazard 

 

•  Read After Write (RAW)  
InstrJ tries to read operand before InstrI writes it 
 

   
 
 
 

•  Caused by a “Dependence” (in compiler nomenclature).  
This hazard results from an actual need for 
communication. 

I: add r1,r2,r3 
J: sub r4,r1,r3 
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Data Hazards: Possible Solutions 

!   Compilation Techniques: 
!   Insertion of nop (no operation) instructions 
!   Instructions Scheduling to avoid that correlating 

instructions are too close 
!   The compiler tries to insert independent instructions 

among correlating instructions 
!   When the compiler does not find independent instructions, 

it insert nops. 

!   Hardware Techniques: 
!   Insertion of “bubbles” or stalls in the pipeline 
!   Data Forwarding or Bypassing 
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Just an example...  
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Insertion of nops 

IF ID EX ME WB 

IF ID EX ME WB 

IF ID EX ME WB 

IF ID EX ME WB 

sub  $2, $1, $3 

and $12, $2, $5 

or  $13, $6, $2 

add $14, $2, $2 

sw  $15,100($2) 

IF ID EX ME WB 
IF ID EX ME WB 

IF ID EX ME WB 

nop 

nop 
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Insertion of bubbles and stalls 

  CK2   CK1   
Time   

Contenuto di  $2   

sub   $2 , $1, $3   ID   IF   MEM   EX   
and $12,  $2 , $5   bubble   IF   
or  $13, $6,  $2   
add $14,  $2 ,  $2   
sw  $15,100( $2 )   

(clock cycles)   WB 
ID   WB   MEM   EX   

ID   IF   WB   MEM   EX   
ID   IF   WB   MEM   EX   

ID   IF   WB   MEM   EX   

CK4   CK3   CK6   CK5   CK9   CK8   CK7   

10   10   10   10   - 20   -20   - 20   - 20   - 20   

CK12   CK11   CK10   

- 20   - 20   - 20   

bubble   
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 sub  $2, $1, $3  sub $2, $1, $3  

 and $12, $2, $5  add $4, $10, $11   

 or $13, $6, $2     and $7, $8, $9  
add $14, $2, $2   lw $16, 100($18)   
sw $15,100($2)      lw $17, 200($19)   

 add $4, $10, $11   and  $12, $2, $5 

 and $7, $8, $9    or $13, $6, $2 

 lw $16, 100($18)   add  $14, $2, $2 

 lw $17, 200($19)   sw $15,100($2) 

Scheduling: Example 
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Forwarding 

!   Data forwarding uses temporary results stored in the 
pipeline registers instead of waiting for the write back 
of results in the RF. 

!   We need to add multiplexers at the inputs of ALU to 
fetch inputs from pipeline registers to avoid the 
insertion of stalls in the pipeline. 
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Forwarding: Example 

IF ID EX ME WB 

IF ID EX ME WB 

IF ID EX ME WB 

IF ID EX ME WB 

IF ID EX ME WB 

sub  $2, $1, $3 

and $12, $2, $5 

or  $13, $6, $2 

add $14, $2, $2 

sw  $15,100($2) 

MEM/EX path EX/EX path 

MEM/ID path 
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Implementation of MIPS with  Forwarding Unit 
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Data Hazards: Load/Use Hazard 

 L1: lw $s0, 4($t1)  # $s0 <- M [4 + $t1] 
L2: add $s5, $s0, $s1 # 1° operand depends from L1 
 
"

  CK2   CK1   

lw  $s0, 4($t1)   ID   IF   WB   MEM   EX   

ID   IF   WB   MEM   EX   

CK4   CK3   CK6   CK5   CK7   

            

add  $s5,$s0,$s1   
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Data Hazards: Load/Use Hazard 

!   With forwarding using the MEM/EX path: 1 stall 

  CK2   CK1   

lw  $s0, 4($t1)   ID   IF   WB   MEM   EX   

ID   IF   WB   MEM   EX   

CK4   CK3   CK6   CK5   CK7   

add  $s5,$s0,$s1   
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Data Hazards: Load/Store 

 L1: lw $s0, 4($t1)  # $s0 <- M [4 + $t1] 
L2: sw $s0, 4($t2)  # M[4 + $t2] <- $s0 
 
"

  CK2   CK1   

Contenuto di  $s0   

lw  $s0, 4($t1)   ID   IF   WB   MEM   EX   

ID   IF   WB   MEM   EX   

CK4   CK3   CK6   CK5   CK7   

10   10   10   10   20   10/20   20   

sw  $s0, 4($t2)   

Ø  Without forwarding : 3 stalls 
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Data Hazards: Load/Store 

!   Forwarding: Stall = 0 
!   We need a forwarding path to bring the load result from the 

memory (in MEM/WB) to the memory’s input for the store. 

  CK2   CK1   

lw  $s0, 4($t1)   ID   IF   WB   MEM   EX   

ID   IF   WB   MEM   EX   

CK4   CK3   CK6   CK5   CK7   

sw  $s0, 4($t2)   
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Implementation of MIPS with  Forwarding Unit 
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Time (clock cycles) 

Forwarding to Avoid LW-SW Data Hazard 
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Data Hazard Even with Forwarding 
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Try producing fast code for 
  a = b + c; 
  d = e – f; 

assuming a, b, c, d ,e, and f in memory.  
Slow code: 

  LW  Rb,b 
  LW  Rc,c 
  ADD  Ra,Rb,Rc 
  SW   a,Ra  
  LW  Re,e  
  LW  Rf,f 
  SUB  Rd,Re,Rf 
  SW  d,Rd 

Software Scheduling to Avoid Load Hazards 

Fast code: 
  LW  Rb,b 
  LW  Rc,c 
  LW  Re,e  
  ADD  Ra,Rb,Rc 
  LW  Rf,f 
  SW   a,Ra  
  SUB  Rd,Re,Rf 
  SW  d,Rd 

Compiler optimizes for performance.   

Hardware checks for safety. 
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Data Hazards 

!   Data hazards analyzed up to now are: 
!   RAW (READ AFTER WRITE) hazards: instruction n+1 

tries to read a source register before the previous 
instruction n has written it in the RF.  

!   Example: 
  add $r1, $r2, $r3 
  sub $r4, $r1, $r5 

!   By using forwarding, it is always possible to solve this 
conflict without introducing stalls, except for the 
load/use hazards where it is necessary to add one stall 
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Data Hazards 

!   Other types of data hazards in the pipeline: 
!   WAW (WRITE AFTER WRITE) 
!   WAR (WRITE AFTER READ) 
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Data Hazards: WAW (WRITE AFTER WRITE) 

!   Instruction n+1 tries to write a destination operand 
before it has been written by the previous instruction n  
⇒ write operations executed in the wrong order 

!   This type of hazards could not occur in the MIPS 
pipeline because all the register write operations occur 
in the WB stage 
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Data Hazards: WAW (WRITE AFTER WRITE) 

!   Example: If we assume the register write in the ALU 
instructions occurs in the fourth stage and that load 
instructions require two stages (MEM1 and MEM2) to 
access the data memory, we can have: 

  CK2   CK1   

lw  $r1, 0($r2)   ID   IF   MEM2   MEM 1  EX   
IF   ID     WB   EX   

CK4   CK3   CK6   CK5   CK7   

add  $r1,$r2,$r3   

WB 
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Data Hazards: WAW (WRITE AFTER WRITE) 

!   Example: If we assume the floating point ALU 
operations require a multi-cycle execution, we can 
have: 

  CK2   CK1   

mul  $f6,$f2,$f2   ID   IF   MUL3   MUL2 MUL1   
IF   ID     AD2   AD1   

CK4   CK3   CK6   CK5   CK7   

add  $f6,$f2,$f2   

MUL4 MEM WB 

CK8 

MEM WB 
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WAW Data Hazards 
 

!   Write After Write (WAW)  
InstrJ writes operand before InstrI writes it. 
 
 
 

 
!   Called an “output dependence” by compiler writers 

This also results from the reuse of name “r1”. 
!   Can’t happen in MIPS 5 stage pipeline because:  

!    All instructions take 5 stages, and  
!    Writes are always in stage 5 

!   Will see WAR and WAW in more complicated pipes 

I: sub r1,r4,r3  
J: add r1,r2,r3 
K: mul r6,r1,r7 
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Data Hazards: WAR (WRITE AFTER READ) 

!   Instruction n+1 tries to write a destination operand 
before it has been read from the previous instruction n  
⇒ instruction n reads the wrong value. 

!   This type of hazards could not occur in the MIPS 
pipeline because the operand read operations occur in 
the ID stage and the write operations in the WB stage. 

!   As before, if we assume the register write in the ALU 
instructions occurs in the fourth stage and that we 
need two stages to access the data memory, some 
instructions could read operands too late in the 
pipeline.  
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Data Hazards: WAR (WRITE AFTER READ) 

!   Example: Instruction sw reads $r2 in the second 
half of MEM2 stage and instruction add writes $r2 
in the first half of WB stage ⇒ sw reads the new 
value of $r2. 

  CK2   CK1   

sw  $r1, 0($r2)   ID   IF   MEM2   MEM 1  EX   
IF   ID     WB   EX   

CK4   CK3   CK6   CK5   CK7   

add  $r2, $r3, $r4   

WB 
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!   Write After Read (WAR)  
InstrJ writes operand before InstrI reads it 
 
 
 
 

!   Called an “anti-dependence” by compiler writers. 
This results from reuse of the name “r1”. 
 

!   Can’t happen in MIPS 5 stage pipeline because: 
!    All instructions take 5 stages, and 
!    Reads are always in stage 2, and  
!    Writes are always in stage 5 

I: sub r4,r1,r3  
J: add r1,r2,r3 
K: mul r6,r1,r7 

WAR Data Hazards 
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Performance Issues in Pipelining 

!   Pipelining increases the CPU instruction throughput 
(number of instructions completed per unit of time), 
but it does not reduce the execution time (latency) 
of a single instruction. 

!   Pipelining usually slightly increases the latency of 
each instruction due to imbalance among the 
pipeline stages and overhead in the control of the 
pipeline. 
!   Imbalance among pipeline stages reduces performance 

since the clock can run no faster than the time needed 
for the slowest pipe stage. 

!   Pipeline overhead arises from pipeline register delay 
and clock skew. 
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Performance Issues in Pipelining 

!   The average instruction execution time for the 
unpipelined processor is: 

Ave. Exec. Time Unpipelined = Ave. CPI Unp. x Clock Cycle Unp.  
 
 

Pipeline Speedup = Ave. Exec. Time Unpipelined =  
Ave. Exec. Time Pipelined 

 
     = Ave. CPI Unp. x Clock Cycle Unp. = 

      Ave. CPI Pipe    Clock Cycle Pipe 
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Performance Issues in Pipelining 
!   The ideal CPI on a pipelined processor is almost always 

1, but stalls cause the pipeline performance to 
degrade form the ideal performance, so we have: 

 
Ave. CPI Pipe = Ideal CPI + Pipe Stall Cycles per  

      Instruction  
   = 1 + Pipe Stall Cycles per Instruction 

!   Pipe Stall Cycles per Instruction are due to  
Structural Hazards + Data Hazards + Control Hazards 
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Performance Issues in Pipelining 
!   If we ignore the cycle time overhead of pipelining and we assume 

the stages are perfectly balanced, the clock cycle time of two 
processors can be equal, so: 

 Pipeline Speedup = __________Ave. CPI Unp._________ 
    1 + Pipe Stall Cycles per Instruction 

!   Simple case: All instructions take the same number of cycles, 
which must also equal to the number of pipeline stages (called 
pipeline depth):  

 Pipeline Speedup = __________Pipeline Depth________ 
    1 + Pipe Stall Cycles per Instruction 

!   If there are no pipeline stalls (ideal case), this leads to the 
intuitive result that pipelining can improve performance by the 
depth of the pipeline. 
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Performances 

!   CI = # of Instructios 

!   # Clock Cycles = CI + # Stall Cycles + 4 

!   CPI = # Clock Cycles / CI = (CI + # Stall Cycles + 4) / CI 

!   MIPS = fclock / (CPI * 10 6) 

45  



46 

Performance 
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It is necessary to insert two stalls 

sub  $2, $1, $3 
and $12, $2, $5 
or  $13, $6, $2 

add $14, $2, $2 

sw  $15,100($2) 

Time 

Instruction order 

IC = 5 
# Clock Cycles = IC + # Stall Cycles + 4 = 5 + 2 + 4 = 11 
CPI = # Clock Cycles/ CI =  11 / 5 = 2.2 
MIPS = fclock / (CPI * 10 6) = 500 MHz / 2.2 * 10 6 = 227.3 
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Asymptotic Performance 

!   We have n iterations of a cycle defined using m 
instructions. We have k stalls for the m instructions 

!   ICAS = m * n 
!   # Clock Cycles = IC AS + (# Stall Cycles )AS + 4 

!   CPI AS = lim n -> ∞ ( IC AS + # Stall Cycles AS +4) /IC AS  

    = lim n -> ∞ ( m *n + k * n + 4 ) / m * n  

    = (m + k) / m 

!   MIPS AS = fclock / (CPIAS* 10 6) 



Questions 


