
1

A Multiobjective Reconfiguration-Aware Scheduler
for FPGA-Based Heterogeneous Architectures:

extended MILP formulation
Enrico A. Deiana, Marco Rabozzi, Riccardo Cattaneo, Marco D. Santambrogio

Politecnico di Milano, Milan, Italy
enrico.deiana@mail.polimi.it, {marco.rabozzi, riccardo.cattaneo, marco.santambrogio}@polimi.it

This technical document presents an extended description of
the Mixed-Integer Linear Programming (MILP) formulation
used for solving the scheduling problem on heterogeneous
architectures consisting of software components and recon-
figurable logic. The following sections describe the variables,
parameters, constraints, objective function and cutting planes
for the formulation.

A. Sets and parameters

In order to define the MILP model we need to introduce
several sets related to the problem:
T := set of tasks to schedule;
RT := set of reconfiguration tasks;
AT := set of all tasks;
Is := set of software implementations;
Ih := set of hardware implementations;
I := set of all the available implementations;
Cs := set of software components;
Ch := set of hardware components;
C := set of all the available components;
P := set of tasks dependencies (i.e. (t1, t2) ∈ P if and only

if t2 depends directly on t1);
P+ := the transitive closure of P (i.e. (t1, t2) ∈ P+ if and

only if t2 depends on t1);
R := set of Field Programmable Gate Array (FPGA) re-

sources (i.e. CLB, DSP, BRAM...).
Notice that we do not know beforehand which is the number
of reconfiguration tasks that will be performed in the final
schedule. However, the set RT must have a fixed number
of elements that cannot vary during the optimization of the
MILP model. In order to solve this issue, we consider the
worst case scenario in which each task, except for the first
one, requires a reconfiguration before its execution, so that
overall |T | − 1 reconfigurations are performed. Within the
set RT we consider |T | − 1 elements, while a special binary
variable (rttrt,t) for each element will be used to determine if
the element represents a required reconfiguration or not. The
following are the parameters needed for the MILP model:
Tmax := maximum time for the execution of the schedule;
Tε := minimum time unit;
timei := execution time of implementation i ∈ I;

poweri := power consumption of implementation i ∈ I;
energyi := energy consumption of implementation i ∈ I;
mapt,i,c := 1 if task t ∈ T can be mapped on component

c ∈ C with implementation i ∈ I , 0 otherwise;
resi,r := resources of type r ∈ R required by implementation

i ∈ Ih;
maxResr := number of resources of type r ∈ R within the

FPGA;
bitr := average bitstream size for a resource of type r;
bitmax := maximum bitstream size for reconfiguration;
Trec := reconfiguration time for each unit of bitstream;
Prec := power consumption for reconfiguration tasks.

In order to simplify the description of the formulation, it is
useful to define the following sets derived from mapt,i,c:

TIC := set of triplets (t, i, c) where t ∈ T, i ∈ I, c ∈ C such
that mapt,i,c = 1;

TI := set of couples (t, i) where t ∈ T, i ∈ I such that
∃c ∈ C : mapt,i,c = 1;

TC := set of couples (t, c) where t ∈ T, c ∈ C such that
∃i ∈ I : mapt,i,c = 1.

Moreover, starting from the definition already presented, we
are able to compute additional sets that will be exploited to
give a better characterization of the model variables:

CP := component precedence set: contains all the couples
of tasks (t1, t2) : t1, t2 ∈ T such that it is possible
to schedule t2 right after t1 on the same hardware
component;

OT := overlapping tasks set: contains all the couples of tasks
(t1, t2) : t1, t2 ∈ AT such that there exists a schedule
in which t1 and t2 overlap in time;

CT := compatible tasks set: contains all the couples of tasks
(t1, t2) : t1, t2 ∈ T such that both tasks have at least
one common hardware implementation (∃i ∈ Ih :
(t1, i), (t2, i) ∈ TI).

More formally the sets can be computed as:

2

CP = {(t1, t2) | t1, t2 ∈ T ∧ t1 6= t2 ∧ (t2, t1) /∈ P+∧
(∃c ∈ Ch | (t1, c), (t2, c) ∈ TC)}

OT = {(t1, t2) | t1, t2 ∈ AT ∧ t1 6= t2∧ ∼ (t1, t2 ∈ RT)∧
(t1, t2) /∈ P+ ∧ (t2, t1) /∈ P+}

CT = {(t1, t2) | t1, t2 ∈ T ∧ t1 6= t2∧
(∃i ∈ Ih, c ∈ Ch | (t1, i, c), (t2, i, c) ∈ TIC)}

(1)

Notice for the definition of OT we take into account a single
reconfigurator, so that no two reconfiguration tasks can overlap
in time by definition.

B. Variables identification

By using the sets and parameters described in the previous
section, we are now able to introduce the variables required
for the MILP model:
bt := ∀t ∈ AT : real variable in the range [0, Tmax] defining

the begin time of task t;
et := ∀t ∈ AT : real variable in the range [0, Tmax] defining

the end time of task t;
mict,i,c := ∀(t, i, c) ∈ TIC: binary variable set to 1 if task t

is mapped to component c with implementation i;
mit,i := ∀(t, i) ∈ TI: binary variable set to 1 if task t is

assigned to implementation i;
mct,c := ∀(t, c) ∈ TC: binary variable set to 1 if task t is

mapped to component c;
occ,r := ∀c ∈ Ch, r ∈ R: real non negative variable (≥ 0)

defining the amount of resources of type r needed by
hardware component c;

cpt1,t2 := ∀(t1, t2) ∈ CP : binary variable set to 1 if task t2
is executed right after task t1 on the same hardware
component;

cftt,c := ∀(t, c) ∈ TC : c ∈ Ch: binary variable set to 1 if
task t is the first task executed on hardware component
c;

rttrt,t := ∀t ∈ T, rt ∈ RT : binary variable set to 1 if task t
requires reconfiguration rt prior to its execution;

rtcrt,c := ∀rt ∈ RT, c ∈ Ch: binary variable set to 1
if reconfiguration task rt is performed on hardware
component c;

bitcc := ∀c ∈ Ch: real non negative variable (≥ 0) defining
the bitstream size for hardware component c;

bat1,t2 := ∀(t1, t2) ∈ OT : binary variable set to 1 if task t1
begins after the beginning of task t2 or at the same
time of t2;

bbt1,t2 := ∀(t1, t2) ∈ OT : binary variable set to 1 if task t1
begins before the end of task t2 or at the end of t2;

bot1,t2 := ∀(t1, t2) ∈ OT : real variable in the range [0, 1] set
to 1 if the beginning of task t1 overlaps in time with
task t2 (i.e. task t1 begins when t2 is in execution);

mibot1,t2,i := ∀(t1, t2) ∈ OT, (t2, i) ∈ TI: real variable in
the range [0, 1] set to 1 if bot1,t2 = 1 and mit2,i = 1.

All the time intervals considered in the model are closed
on the left and open on the right, meaning that instant bt
represents the first time instant in which task t is in execution,
while instant et represents the first instant in time right after
the end of the execution of task t. As an example, if the
time domain is discretized into clock cycles, we have Tε = 1
while the computation of a task t with bt = 2 and et = 5
is performed during clock cycles 2, 3 and 4. Moreover, in
order to speed up the execution time of the MILP solver,
variables occ,r, bitcc, bot1,t2, mibot1,t2,i are declared as real
even thought their values should be integer. This can be done
without changing the semantics of the model thanks to the
constraints of the next sections that relate these variables to
the other integer variables of the formulation.

C. Semantic constraints

Within this section we define all the constraints of the MILP
formulation that are required to guarantee the semantics of the
model variables

Guarantees the semantics for bb, ba and bo:

∀(t1, t2) ∈ OT :

bt1 ≥ et2 − bbt1,t2 · Tmax
bt1 ≤ bt2 − Tε + bat1,t2 · Tmax

bot1,t2 ≥ bat1,t2 + bbt1,t2 − 1

(2)

Ensures that a task is mapped exactly on one implementa-
tion and one component:

∀t ∈ T :
∑

(t,i,c)∈TIC

mict,i,c = 1 (3)

Computes mi and mc from mic:

∀(t, i) ∈ TI : mit,i =
∑

(t,i,c)∈TIC

mict,i,c

∀(t, c) ∈ TC : mct,c =
∑

(t,i,c)∈TIC

mict,i,c
(4)

Computes the end of a task with respect to the selected
implementation:

∀t ∈ T : et = bt +
∑

(t,i)∈TI

mict,i · timei (5)

Ensures that there is at most one first task executed on a
hardware component:

∀c ∈ Ch :
∑

(t,c)∈TC

cftt,c ≤ 1 (6)

Relates cft with mc (i.e. if a task is the first on a hardware
component, it must be mapped to that component):

∀(t, c) ∈ TC | c ∈ Ch : cftt,c ≤ mct,c (7)

Relates cp with mc (i.e. cpt1,t2 = 0 if t1 and t2 are mapped
on different components):

∀(t1, t2) ∈ CP, ∀c1 ∈ C :

mct1,c1 +
∑

(t2,c2)∈TC:c26=c

mct2,c2 + cpt1,t2 ≤ 2 (8)

3

Relates cft with cp and mc (i.e. if a task is mapped to a
hardware component then it is the first task or another task is
executed before it):

∀(t, c) ∈ TC | c ∈ Ch :

mct,c ≤ cftt,c +
∑

(t2,t)∈CP

cpt2,t (9)

Relates cp with the scheduling of the tasks:

∀(t1, t2) ∈ CP :

bt2 ≥ et1 − (1− cpt1,t2) · Tmax
(10)

Ensures that a hardware component occupies not less than
the resources needed by the tasks mapped on it:

∀c ∈ Ch,∀r ∈ R,∀t ∈ T :

ocr,c ≥
∑

(t,i,c)∈TIC

mict,i,c · resi,r (11)

Computes the bitstream size of a hardware component:

∀c ∈ Ch : bitcc =
∑
r∈R

occ,r · bitr (12)

Ensures that a task requires at most one reconfiguration and
that a reconfiguration configure no more than one task:

∀rt ∈ RT :
∑
t∈T

rttrt,t ≤ 1

∀t ∈ T :
∑
rt∈RT

rttrt,t ≤ 1
(13)

Guarantees the semantic of rtc:

∀rt ∈ RT,∀c ∈ Ch,∀t ∈ T | (t, c) ∈ TC :

rtcrt,c ≥ rttrt,t +mct,c − 1
(14)

Ensures that a reconfiguration task ends always after its
beginning:

∀rt ∈ RT : ert ≥ brt (15)

Ensures that if a reconfiguration task is performed on a
component, the reconfiguration cannot last less than required:

∀rt ∈ RT, ∀c ∈ Ch :

ert ≥ brt + (bitcc − (1− rtcrt,c) · bitmax) · Trec
(16)

D. Problem constraints

having guaranteed the semantics of the variables, we are
able to define the constraints tightly related to the problem.

Ensures the dependencies among the tasks:

∀(t1, t2) ∈ P : bt2 ≥ et1 (17)

Avoids overlap among tasks mapped on the same compo-
nent (we exploit the fact that if bot1,t2 = bot2,t2 = 0 there is
no overlapping among tasks t1, t2 ∈ OT):

∀(t1, t2) ∈ OT, ∀c ∈ C | (t1, c), (t2, c) ∈ TC :

bot1,t2 +mct1,c +mct2,c ≤ 2
(18)

Ensures non overlapping also with respect to cp (i.e. given
a task t, there is at most one previous task and one subsequent
task on the same hardware component):

∀t ∈ T :∑
(t,t2)∈CP

cpt,t2 ≤ 1
∑

(t2,t)∈CP

cpt2,t ≤ 1 (19)

Avoids overlapping between the potential reconfiguration
tasks by enforcing a sequential order (to state this inequality
we assume the reconfiguration tasks assigned to unique natural
numbers in the interval [1, |T | − 1]):

∀rt ∈ RT | rt > 1 : brt ≥ ert−1 (20)

Ensures that the hardware components do not exceed the
resources provided by the FPGA:

∀r ∈ R :
∑
c∈Ch

occ,r ≤ maxResr (21)

Ensures that between two subsequent tasks t1, t2 ∈ T
mapped on the same hardware component with different
implementations a reconfiguration must be performed to con-
figure task t2:

∀(t1, t2) ∈ CP, ∀i1 ∈ Ih | (t1, i1) ∈ TI ∧ (t1, t2) ∈ CT :∑
rt∈RT

rttrt,t2 ≥ cpt1,t2 +mit1,i1 +
∑

(t2,i2)∈TI|
i2∈Ih∧i1 6=i2

mit2,i2 − 2

∀t ∈ T :∑
rt∈RT

rttrt,t ≥
∑

(t2,t)∈CP :(t,t2)/∈CT

cpt2,t

(22)

Guarantees that a reconfiguration between tasks t1 ∈ T and
t2 ∈ T is executed after t1 and before t2:

∀rt ∈ RT, ∀t ∈ T :

bt ≥ ert − (1− rttrt,t) · Tmax
∀rt ∈ RT, ∀(t, t2) ∈ CP :

et ≤ brt + (2− rttrt,t2 − cpt,t2) · Tmax

(23)

Notice that the proposed model currently does not directly
consider the delay due to communication among tasks. How-
ever, Equation 17 can be easily modified to take into account
a fixed λt1,t2 communication time among tasks t1 and t2 that
is not dependent on the selected implementations:

∀(t1, t2) ∈ P : bt2 ≥ et1 + λt1,t2 (24)

E. Objective function

Using the variables and the parameters previously defined
we are able to compute and optimize the following three
different metrics within the MILP model:
Execution time (Tcost): The overall execution time needed

to complete the computation of all the tasks of the
schedule including reconfiguration tasks;.

Peak power (Pcost): The estimated peak power reached by
the schedule, this value is computed considering the

4

maximum overall power consumption reached within
a single time unit;

Energy consumption (Ecost): The estimated energy con-
sumption for the schedule, it is computed considering
the specific implementation selected for each task and
the energy needed for all the reconfigurations.

In order to define the metrics within the model, we con-
sider Tcost, Pcost and Ecost as new non negative (≥ 0)
real variables. Since the objective is to minimize a suitable
combination of these metrics, it is enough to provide lower
bounds for variables Tcost, Pcost and Ecost.

The lower bound for the execution time is given by the
following constraint:

∀t ∈ AT : Tcost ≥ et (25)

In order to compute lower bounds for the peak power
we do not need to consider all the time instants within the
schedule, indeed, the peak power varies only when a task
begins or ends its execution. Furthermore, when a tasks ends
its execution, the peak power cannot increase and this allows
us to take into account only the time instants in which a
task begin its execution. For the beginning of each task
t ∈ AT we consider the total power of all the tasks that
are in execution at time bt (i.e. all tasks t2 ∈ AT such that
bot,t2 = 1). The following are the lower bounds for Pcost
considering both time instants derived from application tasks
and reconfiguration tasks (variable rtt is used to remove not
required reconfigurations):

∀t ∈ T :Pcost ≥
∑

(t,i)∈TI

mit,i · poweri + powRTt + powTt

∀rt ∈ RT :Pcost ≥
∑
t∈T

rttrt,t · Prec + powTrt

(26)

Where:

powRTt =
∑

rt∈RT,t2∈T |
(t,rt)∈OT

rttrt,t2 · Prec

powTt =
∑

t2∈T,(t2,i)∈TI|
(t,t2)∈OT

mibot,t2,i · poweri
(27)

On the other hand, regarding the energy consumption, we
are able to compute an exact value as:

Ecost =
∑

(t,i)∈TI

mit,i · timei ·poweri+
∑
rt∈RT

(ert−brt) ·Prec

(28)
Notice that for a reconfiguration rt that is not required, the
solver is allowed to set brt = ert so that it does not impact on
the energy cost. Furthermore, static power and static energy
consumption can be easily taken into account by augmenting
Equations 26 and 28 with a constant term and a linear time
term respectively. Overall, a possible objective function for the
problem can be obtained with a linear combination of Tcost,
Pcost and Ecost:

min

{
q1 ·

Tcost
Tmax

+ q2 ·
Pcost
Pmax

+ q3 ·
Ecost
Emax

}
(29)

Where Tmax, Pmax and Emax are normalization terms rep-
resenting the maximum value that Tcost, Pcost and Ecost can
achieve respectively. While q1, q2 and q3 are weights that can
be set according to the designer preferences.

F. Cutting planes

Within this final section we refine the formulation by
introducing additional constraints whose goal is to provide
a better description of the convex hull and to improve the
numerical properties of the model.

In the previous section, we used Equation (18) to avoid
overlapping among tasks on the same component. This con-
straint depends on variable bo that in turns depends on bb
and ba. The coherence of variables bb and ba is guaranteed
by Equation (2). When the Tmax parameter is too big, the
solver may fail to attribute the correct values to bb and ba
due to numerical errors, so that overlapping is not correctly
detected. To overcome this issue we introduce an additional
non overlapping constraint that binds variables bb and ba
directly to variables mc while improving at the same time
the description of the model:

∀(t1, t2) ∈ OT, ∀c ∈ C | (t1, c) ∈ TC ∧ (t2, c) ∈ TC :

mct1,c +mct2,c − 1 ≤ bbt1,t2 + bbt2,t1

mct1,c +mct2,c − 1 ≤ bat1,t2 + bat2,t1
(30)

The formulation can be further improved by removing
symmetries that depend on the application domain. If we
consider an optimal schedule, another solution with the same
quality can be easily obtained by applying a permutation of
the indexes of the hardware and the software components. To
remove this high amount of equivalent solutions we can simply
add constraints that prevent the mapping of some of the tasks
to some of the components. If we consider both the hardware
and software components and the tasks assigned to increasing
numbers starting from 1, the symmetries can be removed as
follows:

∀c ∈ C,∀t ∈ T | t ≤ c ∧ (t, c) ∈ TC :

mct,c = 0
(31)

